Эвристические методы решения логических задач

Страница 4

Крылов в прошлом году окончил школу, т.е. сейчас он учится на I курсе — знак «+» в клеточке (Крылов; I). Ясно, что тогда ни Зуев, ни Иванов, ни Орлов не учатся на I курсе — в этих клеточках ставим прочерки.

Борис пользуется прошлогодними конспектами Виктора, значит, Виктор на один курс старше Бориса. Но мы знаем, что Борис уже не на I курсе, следовательно, Виктор учится не на I и не на II курсе - в клеточках (Виктор; I) и (Виктор; II) ставим прочерки.

По условию Иванов из Челябинска, а Борис коренной москвич, следовательно, Борис не Иванов - в клеточке (Борис; Иванов) прочерк.

Из таблицы видно, что на I курсе учится не Борис, не Виктор, не Антон. Следовательно, на I курсе учится Петр - в клеточке (Петр; I) появляется знак «+». В клеточках (Петр; II), (Петр; III) и (Петр; IV) прочерки.

Но на I курсе учится Крылов. Значит, Петр носит фамилию Крылов — в клеточке (Петр; Крылов) ставим знак «+». Ясно, что Петр не может быть ни Ивановым, ни Зуевым, ни Орловым, а также Крыловым не могут быть ни Борис, ни Виктор, ни Антон - во всех этих клеточках прочерки.

Обратим внимание на столбец «Иванов». Из него видно, что ни Борис, ни Виктор, ни Петр не носят фамилию Иванов. Следовательно, Ивановым может быть только Антон - в соответствующей клеточке ставим знак « + ». Тогда ясно, что ни Орлов, ни Зуев не носят имя Антон - в этих клеточках появляются знаки «минус».

Обратим внимание на столбец «Орлов»: ни Борис, ни Антон, ни Петр не носят фамилию Орлов. Значит, только Виктор может быть Орловым — клеточку (Виктор; Орлов) помечаем знаком «+». Но тогда Виктор не может быть Зуевым — ставим минус в клетке (Виктор; Зуев). Тогда из таблицы видно, что только Борис может быть Зуевым.

Итак, Петр Крылов учится на I курсе, но Антон Иванов курсом старше Петра, значит, Антон Иванов на II курсе — отметим соответствующие клеточки.

Мы знаем, что Виктор Орлов курсом старше Бориса Зуева, значит, Борис Зуев учится на III, a Виктор Орлов - на IV курсе.

Задача решена. Ответ наглядно представлен в таблице.

3 Прием моделирования с помощью графов

Ситуации, в которых требуется найти соответствие между элементами различных множеств, можно моделировать с помощью графов. В этом случае элементы различных множеств будем обозначать точками, а соответствия между ними - отрезками. Пунктирные линии будут обозначать указанное в задаче отсутствие соотношения.

Задача 7. Три товарища — Иван, Дмитрий и Степан преподают различные предметы (химию, биологию и физику) в школах Москвы, Тулы и Новгорода. О них известно следующее:

Иван работает не в Москве, а Дмитрий - не в Новгороде;

москвич преподает физику;

тот, кто работает в Новгороде, преподает химию;

4) Дмитрий и Степан преподают не биологию;

Какой предмет, и в каком городе преподает каждый?

Решение: В задаче можно выделить три множества: учебных предметов, городов, учителей. Каждое множество содержит по три элемента. Обозначим их точками — вершинами графа (рисунок 2)

В зависимости от условий задачи будем соединять точки отрезками, если имеет место соответствие между данными элементами, или пунктирной линией, если соответствия нет.

Задача сводится к нахождению на графе трех сплошных треугольников с вершинами в разных множествах (на доске и в тетради их можно выделить разными цветами).

Так, используя условие 1), проведем пунктирную линию, соединяющую объекты Иван и Москва, Дмитрий и Новгород.

В соответствии с условием 2) соединим сплошной линией вершины Москва и физика, а условие 3) выразим сплошной линией от точки Новгород до точки химия.

Дмитрий и Степан преподают не биологию, соединим соответствующие вершины пунктирными линиями. Кто же преподает биологию? Если это не Дмитрий и не Степан, то получается, что биологию преподает Иван. Эти объекты соединяет сплошная линия.

Где же живет преподаватель биологии? Известно, что химик живет в Новгороде, а физик в Москве, следовательно, биолог живет в Туле. Обратим внимание на треугольник, образованный вершинами Иван, Тула, биология: в нем есть две сплошные стороны, значит, третью сторону также можно выделить сплошной линией. В самом деле, если Иван преподает биологию, а биолог живет в Туле, то Иван живет в Туле.

Что известно про Дмитрия? Дмитрий не живет в Новгороде (по условию) и не живет в Туле (там живет Иван), значит, Дмитрий живет в Москве - проведем соответствующую сплошную линию. Но москвич преподает физику — эта линия тоже сплошная. В треугольнике с вершинами в точках Дмитрий, Москва и физика две стороны сплошные, следовательно, третью сторону тоже можно выделить сплошной линией.

Страницы: 1 2 3 4 5


Статьи по теме:

Сущность понятия «речевые умения» их виды
Одним из важнейших показателей уровня культуры человека, его мышления, интеллекта является его речь. Возникнув впервые в раннем детстве в виде отдельных слов, не имеющих еще четкого грамматического оформления, речь постепенно обогащается и усложняется. Ребенок овладевает фонетическим строем и лекси ...

Разработка плана патриотического воспитания для учеников 1 класса
патриотический воспитание младший школьник Развитие общества, его благополучие и процветание, духовная и нравственная культура во многом зависят от цели и содержания воспитания. Одним из важнейших институтов, осуществляющих воспитательную работу и патриотическое воспитание в частности, во все време ...

Конспекты занятий
В этом пункте я решила опубликовать методику по математическому развитию детей раннего возраста, разработанную доктором педагогических наук Белошистой Анной Витальевной. Предлагаемая система занятий ставит целью развитие пространственного мышления ребенка, формирование логических приемов умственных ...

Навигация

Copyright © 2023 - All Rights Reserved - www.basicpedagog.ru