Для упрощения логических высказываний могут быть использованы следующие равносильности (свойства):
Свойства конъюнкции и дизъюнкции
Коммутативные (переместительные) законы
Ассоциативные (сочетательные) законы
Дистрибутивные (распределительные) законы
Законы поглощения
Законы склеивания
Свойства с отрицанием
Законы Де Моргана
Закон двойного отрицания ;
Закон противоречия ;
Закон исключения третьего .
Свойства с логическими константами
,
;
Связь между логическими операциями
;
,
;
,
;
;
Нормальные формы. Совершенные нормальные формы
Элементарной конъюнкцией называется конъюнкция переменных или их отрицаний, в которой каждая переменная встречается не более одного раза.
Примеры элементарных конъюнкций
.
Всякая дизъюнкция элементарных конъюнкций называется дизъюнктивной нормальной формой (ДНФ) и выглядит следующим образом:
где и
- различные элементарные конъюнкций.
Примеры ДНФ:
Алгоритм приведения к ДНФ может быть описан с привлечением приведенных выше равносильностей:
1. Используя закон двойного отрицания и законы Де Моргана все отрицания "спускаются" до переменных;
2. Раскрываются скобки по распределительному закону;
3. С помощью законов поглощения, противоречия и исключенного третьего удаляются лишние конъюнкции и повторение переменных;
4. С помощью соотношений с участием логическими константами, удаляются оставшиеся константы.
Элементарной дизъюнкцией называется дизъюнкция переменных или их отрицаний, в которой каждая переменная встречается не более одного раза.
Примеры элементарных дизъюнкций:
Всякая конъюнкция элементарных дизъюнкций называется конъюнктивной нормальной формой (КНФ) и выглядит следующим образом:
где и
- различные элементарные дизъюнкции.
Примеры КНФ:
Алгоритм приведения к КНФ может быть описан с помощью тех же соотношений и законов, которые использовались и в алгоритме для ДНФ.
1. Используя закон двойного отрицания и законы Де Моргана все отрицания "спускаются" до переменных;
2. Раскрываются скобки по распределительному закону;
3. С помощью законов поглощения, противоречия и исключенного третьего удаляются лишние дизъюнкции и повторения переменных;
4. С помощью соотношений с участием логическими константами, удаляются оставшиеся константы.
Совершенной дизъюнктивной нормальной формой формулы алгебры высказываний (СДНФ) называется ДНФ, в которой: 1) все слагаемые содержат сомножителем все переменные - без отрицания либо с отрицанием, но не вместе. 2) отсутствуют повторения слагаемых и сомножителей.
Совершенной конъюнктивной нормальной формой формулы алгебры высказываний (СКНФ) называется КНФ, в которой: 1) каждый сомножитель содержит слагаемым каждую переменную, без отрицания либо с отрицанием, но не вместе; 2) отсутствуют повторения сомножителей и слагаемых.
Статьи по теме:
Решение вопроса воспитания толерантности в современных концепциях
воспитания ребенка
Последнее десятилетие привнесло радикальные изменения в систему отечественного дошкольного образования. На смену типовой программе пришли вариативные, на смену унифицированному «детскому саду» – разные типы и виды дошкольных образовательных учреждений. Последние 10 лет ДОУ официально работали по 12 ...
Научно-исследовательская практика
Цели и задачи практики. Цель практики – проведение исследований по предметной области, определяемой темой магистерской диссертации, ориентация на рынке труда, оценка готовности выступать в роли системного аналитика в конкретных видах деятельности: научных исследований в сфере информатики и вычислит ...
Разработка плана патриотического воспитания для учеников 1 класса
патриотический воспитание младший школьник Развитие общества, его благополучие и процветание, духовная и нравственная культура во многом зависят от цели и содержания воспитания. Одним из важнейших институтов, осуществляющих воспитательную работу и патриотическое воспитание в частности, во все време ...