Для упрощения логических высказываний могут быть использованы следующие равносильности (свойства):
Свойства конъюнкции и дизъюнкции
Коммутативные (переместительные) законы
Ассоциативные (сочетательные) законы
Дистрибутивные (распределительные) законы
Законы поглощения
Законы склеивания
Свойства с отрицанием
Законы Де Моргана
Закон двойного отрицания ;
Закон противоречия ;
Закон исключения третьего .
Свойства с логическими константами
,
;
Связь между логическими операциями
;
,
;
,
;
;
Нормальные формы. Совершенные нормальные формы
Элементарной конъюнкцией называется конъюнкция переменных или их отрицаний, в которой каждая переменная встречается не более одного раза.
Примеры элементарных конъюнкций
.
Всякая дизъюнкция элементарных конъюнкций называется дизъюнктивной нормальной формой (ДНФ) и выглядит следующим образом:
где и
- различные элементарные конъюнкций.
Примеры ДНФ:
Алгоритм приведения к ДНФ может быть описан с привлечением приведенных выше равносильностей:
1. Используя закон двойного отрицания и законы Де Моргана все отрицания "спускаются" до переменных;
2. Раскрываются скобки по распределительному закону;
3. С помощью законов поглощения, противоречия и исключенного третьего удаляются лишние конъюнкции и повторение переменных;
4. С помощью соотношений с участием логическими константами, удаляются оставшиеся константы.
Элементарной дизъюнкцией называется дизъюнкция переменных или их отрицаний, в которой каждая переменная встречается не более одного раза.
Примеры элементарных дизъюнкций:
Всякая конъюнкция элементарных дизъюнкций называется конъюнктивной нормальной формой (КНФ) и выглядит следующим образом:
где и
- различные элементарные дизъюнкции.
Примеры КНФ:
Алгоритм приведения к КНФ может быть описан с помощью тех же соотношений и законов, которые использовались и в алгоритме для ДНФ.
1. Используя закон двойного отрицания и законы Де Моргана все отрицания "спускаются" до переменных;
2. Раскрываются скобки по распределительному закону;
3. С помощью законов поглощения, противоречия и исключенного третьего удаляются лишние дизъюнкции и повторения переменных;
4. С помощью соотношений с участием логическими константами, удаляются оставшиеся константы.
Совершенной дизъюнктивной нормальной формой формулы алгебры высказываний (СДНФ) называется ДНФ, в которой: 1) все слагаемые содержат сомножителем все переменные - без отрицания либо с отрицанием, но не вместе. 2) отсутствуют повторения слагаемых и сомножителей.
Совершенной конъюнктивной нормальной формой формулы алгебры высказываний (СКНФ) называется КНФ, в которой: 1) каждый сомножитель содержит слагаемым каждую переменную, без отрицания либо с отрицанием, но не вместе; 2) отсутствуют повторения сомножителей и слагаемых.
Статьи по теме:
Подходы к воспитанию положительной оценки к окружающему миру у младших
школьников
Несколько лет назад у большинства из нас была иллюзия: быстрая демократизация страны также приведет нас к высокому экономическому и культурному уровню, который достигнут в большинстве цивилизованных стран и в образовании, и в воспитании в том числе. «Культура и богатство страны могут быть изменены ...
Проект формирования у младших школьников умения
осуществлять поиск необходимой информации для выполнения учебных заданий по окружающему
миру
Введение ФГОС НОО предусматривает формирование умения учиться, работать с информацией. Сегодня важно научить младших школьников владеть информацией: знать источники информации, уметь искать ответ на интересующий вопрос, отбирать правильно (в соответствии с темой и задачей) информацию, грамотно офор ...
Средства коррекционной работы по развитию речи
детей старшего дошкольного возраста с нарушениями слуха
Развитие речи глухих детей будет более эффективным при двух условиях. Во-первых, дети должны быть полностью обеспечены совершенными двуушными слуховыми аппаратами и квалифицированной сурдопедагогической и технической помощью по их обслуживанию. Во-вторых, должны быть созданы условия для занятий мал ...