Замечание: Обратим внимание, что одно определение получается из другого заменой друг другом слов «слагаемое» и «сомножитель».
Примеры
— СДНФ некоторой формулы двух переменных
- СКНФ функции трех переменных
Допустимыми для СДНФ (СКНФ) являются только некоторые полные конъюнкции (дизъюнкции): содержащие — без повторений — все переменные этой функции — с отрицаниями или без них.
Опишем два способа приведения к совершенным нормальным формам.
1-Й СПОСОБ — АНАЛИТИЧЕСКИЙ
Алгоритм приведение к СДНФ:
1.Приводят к ДНФ с помощью равносильных преобразований;
2. Умножают на единицы, представленные в виде дизъюнкций каждой недостающей переменной, с ее отрицанием;
3.Раскрывают скобки — по первому распределительному закону;
4.Исключают повторения слагаемых.
Пример:
Алгоритм приведение к СКНФ:
1. Формулу приводят к КНФ;
2. Прибавляют нули, представленные в виде конъюнкций каждой недостающей переменной с ее отрицанием;
3. С помощью второго распределительного закона приводят эти сомножители к суммам первой степени, т. е. не содержащим произведений;
4. Исключают повторения сомножителей.
Пример:
2-Й СПОСОБ — ТАБЛИЧНЫЙ
Составим таблицу истинности для функции :
x |
y |
z |
|
0 |
0 |
0 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
0 |
1 |
1 |
0 |
1 |
0 |
0 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
0 |
1 |
1 |
1 |
1 |
1 |
Алгоритм приведение к СДНФ:
1. Строим таблицу истинности;
2. Рассматриваем только те строки таблицы, в которых формула принимает значение 1;
3. Каждой такой строке соответствует конъюнкция всех аргументов (без повторений). Аргумент, принимающий значение 0, входит в нее с отрицанием, значение 1 — без отрицания;
4. Образуем дизъюнкцию всех полученных конъюнкций.
Пример: В нашей таблице первую строку опускаем: функция принимает значение 0. Второй строке соответствует конъюнкция третью строку опускаем и т. д.
СДНФ:
Приведение к СКНФ:
1.Строим таблицу истинности;
2.Рассматриваем только те строки таблицы, где функция принимает значение 0;
3.Каждой такой строке соответствует дизъюнкция всех переменных (без повторений). Аргумент, принимающий значение 0, берется без отрицания, значение 1 — с отрицанием;
4.Образуют конъюнкцию полученных дизъюнкций.
В нашем примере первой строке таблицы соответствует дизъюнкция
вторую строку опускаем и т. д.
СКНФ:
Замечания:
Если условиться из двух совершенных форм, СДНФ и СКНФ, отдавать предпочтение той, которая содержит меньше букв, то СДНФ предпочтительнее, если в столбце значений функции таблицы истинности меньше единиц; СКНФ — если в этом столбце меньше нулей.
В обычной, школьной алгебре мы знаем, что нет общего метода перехода от табличного задания функции к аналитическому. В алгебре высказываний, как видим, такой метод существует /5,7/.
Решение логических задач с помощью логики высказываний
Статьи по теме:
Особенности изменений и нововведений
Анализ всех сторон функционирования организации, в частности, анализ руководства, принятия решений и коммуникаций показывают, что организации не являются чем-то застывшим, а имеют динамический характер, вызванный определенными организационными изменениями. Изменения в организациях могут происходить ...
Организация учебного процесса
В 70 – первой половине 90-х гг. XIX в. наиболее распространенный методом обучения был так называемый «догматический метод», когда обучение в основном сводилось к простому «спрашиванию - заданию». Учитель как правело, начинает урок с проверки домашнего задания. К моменту объяснения нового материала ...
Специфика изучения ИЯ на старшей ступени
Специфики иностранного языка как учебного предмета на старшей ступени обучения в средней общеобразовательной школе включает следующие положения: - роль ИЯ как учебного предмета в современной образовательной системе; - специфика обучения ИЯ на старшей ступени средней общеобразовательной школы, основ ...