Применение дидактических игр на примере обучения математике в начальной школе

Страница 1

Нахождение значений математических выражений.

К этому виду вычислений можно отнести и числовые выражения и выражения, содержащие переменную. Числовые выражения могут предлагаться в различной словесной формулировке. Например, из 10 вычесть 5; 12 минус 7; уменьшаемое 21 вычитаемое 7, найти разность. Числовые выражения могут включать в себя одно арифметическое действие или несколько действий со скобками и без скобок. Например:

12 + (7 - 4) : 5;

35 – 15:2;

14+15*3.

Числовые выражения могут быть заданы в форме таблицы, окошек, рамок, и т.д. Например, задание заполнить недостающие числа в таблице.

Уменьшаемое

56

95

64

97

Вычитаемое

43

34

24

65

Разность

Математические выражения могут быть заданы в форме выражения, содержащего одну или несколько переменных. Например, такое задание: “Найти значение выражения а + 15 при следующих значениях переменной 5, 10, 15, 20”. Подставляя данные вместо буквы, находят значение выражения. Цель каждого из этих заданий выработать вычислительные навыки.

В этом случае можно применить такие типы дидактических игр как игра «кто быстрее», когда команды учащихся соревнуются в заполнении таблиц, получая положительные очки за каждое правильное высказывание и отрицательные за каждую ошибку.

Сравнение математических выражений

Можно научить сравнивать числовые выражения и выражения с переменной. Существуют следующие способы сравнения выражений:

на основе нахождения значения каждого выражения и их сравнения;

на основе знания свойств арифметических действий;

на основе знания зависимости изменения результата действия от изменения одного из компонентов;

на основе знания зависимости изменения результатов результата действия от изменения одного из компонентов;

на основе знания частных случаев выполнения арифметических действий с числами 1 и 0.

Например, можно предложить найти похожие пары выражений по способу их сравнения.

6 +9 и 9 + 6; 81:9и81:3; 10 : 2 и ( 4+6 ): 2;

10*8 и 8*10; 82 – 1 и 76 + 0, 24 – 8 и 22 – 8,

22+ 7 и 22+ 14; 20*0 и 44*1; 22 + 14 и 22 + (10 + 4 );

После анализа сравнения каждой пары выражений, распределяют их на следующие группы:

1 группа 2 группа 3 группа 4 группа

6 + 9 и 9 + 6 10*8 и 8*10; 22 + 7 и 22 + 14; 20*0и44*1;

22+14 и 22+( 10+4); 81:9и81:3; 82 – 1 и 76 + 0;

10:2и(4+6):2; 24 – 8 и 22 – 8;

Сравнение выражений группы основано на знании свойств арифметических действий. Сравнение выражений 2 группы основано на нахождении значения каждого выражения и их сравнения. Сравнение выражений 3 группы основано на знание зависимости изменения результатов действия от изменения одного из компонентов. Сравнение выражений 4 группы основано на знании частных случаев выполнения арифметических действий с числами 1и 0.

На такой же теоретической основе можно провести сравнение выражений с буквенными значениями. Задание такого вида можно рассматривать как обобщение возможных способов сравнения. Например, нужно сравнить такие пары выражений:

а + в и в + а;

с-8 и с - 1; в+13 и в-13;

16-а и 28-а;

72 : к и 36 : к;

8* а и 18* а;

Решение уравнений

Страницы: 1 2 3 4 5 6


Статьи по теме:

План взаимодействия с родителями
Игра требует достаточно большой по объему работы со стороны педагогов и родителей, поэтому мы выстраиваем их взаимодействие по определенной схеме. Из которой понятно, что значительная часть предварительной работы ложится на плечи воспитателя. Успех реализации опыта, на наш взгляд, имеет прямую зави ...

Характеристика системы дополнительного образования детей
Воспитание как первостепенный приоритет в образовании, является составляющей педагогической деятельности. Важнейшей задачи воспитания – формирование у школьников гражданской ответственности и правового самосознания, духовности и культуры, инициативности, самостоятельности, толерантности, способност ...

Специальное формирование как алгоритмических, так и эвристических приемов умственной деятельности
Исследование процесса усвоения и применения знаний показали, что обычно учащиеся усваивают содержательную сторону знаний и непосредственно с ней связанные конкретные приемы решения довольно узкого круга задач. Лишь у школьников с высокой обучаемостью на основе решения единичных задач формируются об ...

Навигация

Copyright © 2021 - All Rights Reserved - www.basicpedagog.ru